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Background and purpose: This study aims to build machine learning models to predict radiation-induced
rectal toxicities for three clinical endpoints and explore whether the inclusion of radiomic features cal-
culated on radiotherapy planning computerised tomography (CT) scans combined with dosimetric fea-
tures can enhance the prediction performance.

Materials and methods: 183 patients recruited to the VoxTox study (UK-CRN-ID-13716) were included.
Toxicity scores were prospectively collected after 2 years with grade > 1 proctitis, haemorrhage

?g’( ;‘c'?trds : (CTCAEvV4.03); and gastrointestinal (GI) toxicity (RTOG) recorded as the endpoints of interest. The rectal
Radiott)l,erapy wall on each slice was divided into 4 regions according to the centroid, and all slices were divided into 4

sections to calculate region-level radiomic and dosimetric features. The patients were split into a training
set (75%, N =137) and a test set (25%, N = 46). Highly correlated features were removed using four feature
selection methods. Individual radiomic or dosimetric or combined (radiomic + dosimetric) features were
subsequently classified using three machine learning classifiers to explore their association with these
radiation-induced rectal toxicities.
Results: The test set area under the curve (AUC) values were 0.549, 0.741 and 0.669 for proctitis, haem-
orrhage and GI toxicity prediction using radiomic combined with dosimetric features. The AUC value
reached 0.747 for the ensembled radiomic-dosimetric model for haemorrhage.
Conclusions: Our preliminary results show that region-level pre-treatment planning CT radiomic features
have the potential to predict radiation-induced rectal toxicities for prostate cancer. Moreover, when com-
bined with region-level dosimetric features and using ensemble learning, the model prediction perfor-
mance slightly improved.
© 2023 The Authors. Published by Elsevier B.V. Radiotherapy and Oncology 183 (2023) 109593 This is an
open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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In the UK, prostate cancer (PCa) is the most common cancer in
men, resulting in 10,755 deaths in England and Wales in 2017 [1].
Although considered typically a disease of older age, more than a
quarter of cases occur before current retirement age. Radiotherapy
is used with curative intent in more than half of all PCa patients,
and in the last three decades there have been significant techno-
logical improvements resulting in new treatment strategies such
as image-guided intensity-modulated radiotherapy (IMRT) and
stereotactic body radiotherapy (SBRT) [2]. Whilst these approaches
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can deliver higher radiation doses to tumours, maintain acceptably
low doses to surrounding normal tissues, and have been shown in
clinical trials to improve treatment outcomes, irradiation to organs
at risk (OARs) is still unavoidable, causing complications. More-
over, when planning radiotherapy, coverage of the target areas
should not be reduced to avoid irradiation to OARs. Several studies
comparing moderate hypofractionation and conventional fraction-
ation for treating PCa patients suggest that long-term side effects
are similar, indicating that late toxic effects on the rectum and
bladder remain a significant concern [3-5].

There has been research [6-8] that has modelled gastrointesti-
nal (GI) complications using normal tissue complication probabil-
ity (NTCP) models, which are based on clinical and dosimetric
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data. However, there are large uncertainties when using these
radiobiological-based models and their associated parameters on
different patient cohorts with unique characteristics, which makes
generalisability and reproducibility difficult. Moreover, dose-
volume histogram (DVH)-based models discard spatial dose infor-
mation, which may be vital for identifying significant toxicity in
patients [9,10]. In addition to NTCP modelling, many studies [11-
13] have correlated radiotoxicity with clinical and dosimetric
parameters using statistical analysis and machine learning. Never-
theless, the limitation of these models is that they do not consider
the individual patient response to radiotherapy. Since a patient’s
radiosensitivity is dependent on a complex blend of genotype
and phenotype parameters, there is growing interest in developing
predictive biomarkers for treatment personalisation. One very
promising area is radiomics, interest in which has grown steadily
over the past few years [14-16]. The concept of predicting
radiotoxicity using radiomics is based on the hypothesis that
image features can reflect underlying physio-pathological informa-
tion. Additionally, radiomics can capture tumour and organ-
specific intrinsic heterogeneity, which can be used to assess indi-
vidual susceptibility to radiotoxicity, enabling further progress in
personalised medicine [17,18].

However, while there have been several studies applying
radiomics analysis of different medical images and correlating
radiomic features with dose factors to facilitate the development
of personalised therapy, there has been limited research investi-
gating the relationship between pre-treatment planning comput-
erised tomography (CT) radiomic features and late rectal toxicity
induced by PCa radiotherapy. In this study, we aim to explore
whether region-level pre-treatment planning CT radiomic fea-
tures of the rectal wall correlate with three of the most common
late toxicity endpoints, namely haemorrhage, proctitis and Gl
toxicity.

Materials and methods

Patients

The patient data (N = 187) used for this analysis was prospec-
tively and rigorously collected as part of the UK Clinical Research
Network Study Portfolio (UK-CRN-ID-13716) VoxTox study, details
of which have previously been published [10,19-21]. VoxTox
received approval from the National Research Ethics Service
(NRES) Committee East of England (13/EE/0008) in February
2013. Appropriate consent was obtained from all participants.
The goal of the programme was to link the accumulated dose at
voxel level with toxicity outcomes [22]. Of the 187 patients, 4 were
excluded during data processing to avoid generating null feature
sets from some regions of rectal wall leaving a total of 183 patients.
All patients were treated with helical TomoTherapy (Accuray Inc.,
Sunnyvale, CA, USA), including daily image guidance megavoltage
(MV) CT with positional correction before treatment [19]. The
acquisition parameters of the kilovoltage (kV) CT planning scans
are listed in Supplementary Material A. To investigate the potential
predictive power of pre-treatment planning CT radiomic features,
three commonly observed late toxicities were recorded two years
after the treatment completion using a toxicity questionnaire
specifically designed for the VoxTox study, where proctitis and
haemorrhage were assessed based on the Common Terminology
Criteria for Adverse Events version 4.03 (CTCAEv4.03) [23], and
GI toxicity was evaluated according to the Radiation Therapy
Oncology Group (RTOG) scoring system [24]. The incidence rates
at 2 years for all clinical endpoints are shown in Table 1. All calcu-
lations were performed using Python 3.7.13 (Python Software
Foundation, OR, USA).

Fractionation schedules

Patients included in the analysis were assigned to two fraction-
ation schedules, N = 107 with 74 Gy in 37 fractions and N = 76 with
60 Gy in 20 fractions. The doses for the patients prescribed 60 Gy in
20 fractions were converted to equivalent dose in 37 fractions
using the tissue-specific biological response ao/p = 2.1 Gy based
on CHHiP (Conventional versus hypofractionated high-dose
intensity-modulated radiotherapy for prostate cancer: 5-year out-
comes of the randomised, non-inferiority, phase 3 CHHiP trial) con-
straints and used previously in other VoxTox studies with
equivalent levels of cumulative toxicity incidence assumed
between the two schedules [25,5].

Region-of-interest delineation

All the pre-treatment planning CT scans were manually con-
toured by an experienced site-expert clinical oncologist following
the VoxTox protocols [25]. Since the rectum is a hollow organ
where the lumen contains meaningless dosimetric and radiomic
information, the rectal wall was selected as the volume of interest
and was extracted on each slice by expanding the rectum contour
inwards by 2 pixels. Additionally, to incorporate spatial informa-
tion with radiomic and dosimetric features, a new method was
defined to extract regions of interest from the rectal wall. As shown
in Fig. 1, in the axial direction, slices for each patient were divided
into 4 sections and on each slice the rectal wall was equally divided
into 4 regions according to the centroid.

Feature extraction

For each region, subimages of size 8x8 pixels? were extracted at
1-pixel intervals after expanding the 2-pixel-wide rectal wall both
anteriorly and posteriorly by 3 pixels, and 7 radiomics/texture
analysis methods were used to extract a total of 118 features from
each region. Details of the radiomic features used are shown in
Supplementary Material B. All feature extraction algorithms were
implemented adhering to the protocols set out by Image Biomarker
Standardization Initiative (IBSI) [26]. To reduce computation time
without loss of accuracy, grey-level information from the subim-
ages was quantised to 16 levels before calculating image features
[27,28]. After extraction in each region, features were averaged
to obtain the region-level radiomic features. The maximum and
the mean dose from each region were calculated based on the orig-
inal dose plan and thereafter referred to as region-level dosimetric
features. All the averaged radiomic features, maximum dose and
mean dose from 4 regions were combined together as the input
of machine learning models. Features with zero variance were
removed. All the features were standardised (mean = 0, SD = 1)
before further processing.

Feature selection

To avoid overfitting, feature selection algorithms including
principal component analysis (PCA), variance threshold, correla-
tion threshold and random forest (RF) importance were applied
to the training set to select the most important features and
remove highly-correlated and/or redundant features. For PCA,
95%, 90%, 85%, 80% explained variances were used, and for variance
threshold, features with variance less than 5, 10, 20, 30 and 40
were removed. For correlation threshold, the correlation
coefficient > 0.8 was used to ensure that all selected features do
not have a strong linear relationship with one another. For RF
importance, 30, 40, 50 and 60 features were selected respectively
after feature ranking for the radiomic/radiomic-dosimetric model
and 5, 10, 15, 20 features were selected for the dosimetric model.
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Table 1
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Incidence rates at 2 years for the full VoxTox Prostate dataset, training set and test set, stratified by prescribed dose.

Toxicity Endpoint  Total patients, N(%) 74 Gy, N (%) 60 Gy, N (%) Training set, N (%) 74 Gy,N (%) 60 Gy, N (%) Testset, 74 Gy,N (%) 60 Gy,N (%)
N (%)
183 (100) 107 (58) 76 (42) 137 (75) 46 (25)

Proctitis 82 (60) 55 (40) 25 (54) 21 (46)
=G0 148 (81) 89 (49) 59 (32) 111 (81) 68 (50) 43 (31) 37 (80) 21 (46) 16 (35)
>Gl1 35(19) 18 (10) 17 (9) 26 (19) 14 (10) 12 (9) 9 (20) 4(9) 5(11)

Haemorrhage 78 (57) 59 (43) 29 (63) 17 (37)
=G0 122 (67) 76 (42) 46 (25) 91 (66) 56 (41) 35 (26) 31(67) 20(43) 11 (24)
>Gl1 61 (33) 31(17) 30 (16) 46 (34) 22 (16) 24 (18) 15(33) 9(20) 6 (13)

GI Toxicity 78 (57) 59 (43) 29 (63) 17 (37)
=G0 86 (47) 51 (28) 35 (19) 64 (47) 36 (26) 28 (20) 22 (48) 15(33) 7 (15)
> Gl 97 (53) 56 (31) 41 (22) 73 (53) 42 (31) 31(23) 24 (52) 14 (30) 10 (22)

GI: gastrointestinal.
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Fig. 1. A diagram illustrating the main steps in building the predictive models using radiomic and dosimetric features extracted from pre-treatment planning CT scans.

Classification

183 patients were split into a training set (75%, N = 137) and a
test set (25%, N = 46) with a balanced toxicity incidence rate
(Table 1). Radiomic features and dosimetric features were used
alone or in combination as the input to a support vector machine
(SVM), a light gradient boosting machine (LightGBM) and a neural
network (NN). Hyperparameters of the classifiers were fitted using
a randomised search with 200 iterations. For each iteration, a 5-
fold cross-validation with 20 repetitions was performed. The mean
validation area under the curve (AUC) value was calculated by
averaging over all folds for each hyperparameter combination
and the combination with the highest AUC value was selected as
the optimised hyperparameters. The core codes of the classifiers
with the optimised hyperparameters are provided in Supplemen-
tary Material C. Ensemble learning was applied to improve the per-
formance by averaging the predicted probabilities obtained from
different classifiers. AUC of the receiver operator characteristic
(ROC) curve and 95% confidence intervals (CIs) were calculated
with bootstrap resampling 1000 times. One-sided Mann-Whitney
U rank tests were used to compare the predictive performance of
different models.

Results

The results of the best models for grade > 1 proctitis, haemor-
rhage and GI toxicity, selected by mean AUC values of the valida-
tion set, are shown in Table 2. The test AUC scores of the
selected radiomic, dosimetric and radiomic-dosimetric models
for proctitis were 0.431 (95% CI 0.393-0.469), 0.538 (95% CI
0.507-0.568) and 0.549 (95% CI 0.515-0.583), respectively. For
haemorrhage, the radiomic-dosimetric model was found to be a
highly predictive model with 0.741 (95% CI 0.719-0.762) test
AUC, followed by the radiomic model with 0.676 (95% CI 0.653-
0.699) AUC and dosimetric model least good with 0.650 (95% CI
0.622-0.678) AUC. For GI toxicity, the test AUC values for radiomic,
dosimetric and radiomic-dosimetric models were 0.634 (95% CI
0.610-0.658), 0.573 (95% CI 0.547-0.598) and 0.669 (95% CI
0.645-0.694). For each endpoint, the predictive performance of
the radiomic-dosimetric model was compared with that of the
radiomic model and the dosimetric model, respectively, using a
Mann-Whitney U rank test, with the alternative hypothesis that
the distribution underlying the AUC values of the radiomic-
dosimetric model is stochastically greater than that of the radiomic
model and the dosimetric model (p < 0.05). For all endpoints, the
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Table 2
Models’ performance for the grade > 1 proctitis, haemorrhage and Gl toxicity prediction.
Endpoint Model Classifier Feature Validation AUC Test AUC p-value
Selection (95% CI) (95% CI) (vs RD)
Proctitis RD NN RF40 0.693 (0.650-0.736) 0.549 (0.515-0.583)
R LGBM RF50 0.700 (0.654-0.746) 0.431 (0.393-0.469) <0.001
D SVM Corr0.8 0.609 (0.567-0.651) 0.538 (0.507-0.568) <0.001
Haemorrhage RD LGBM RF40 0.755 (0.722-0.788) 0.741 (0.719-0.762)
R LGBM RF30 0.690 (0.653-0.727) 0.676 (0.653-0.699) <0.001
D NN RF20 0.715 (0.677-0.753) 0.650 (0.622-0.678) <0.001
GI Toxicity RD SVM RF50 0.744 (0.713-0.755) 0.669 (0.645-0.694)
R LGBM RF40 0.703 (0.671-0.735) 0.634 (0.610-0.658) <0.001
D SVM RF10 0.691 (0.657-0.725) 0.573 (0.547-0.598) <0.001

AUC: area under the curve; CI: confidence interval; GI: gastrointestinal; RD: radiomic-dosimetric model; R: radiomic model; D: dosimetric model; NN: neural network;
LGBM: light gradient boosting machine; SVM: support vector machine; RF40: top 40 features from random forest importance; RF50: top 50 features from random forest
importance; Corr0.8: correlation threshold = 0.8; RF30: top 30 features from random forest importance; RF20: top 20 features from random forest importance; RF10: top 10

features from random forest importance.

Table 3
AUC values of the ensembled radiomic-dosimetric models for grade > 1 proctitis, haemorrhage and GI toxicity prediction.
Endpoint Classifier Validation Test AUC (95% CI) Ensembled AUC p-value
AUC (95% CI) (95% CI)
Proctitis SVM 0.668 (0.618-0.718) 0.548 (0.511-0.585) 0.596
ensembled RD LGBM 0.666 (0.622-0.710) 0.541 (0.516-0.567) (0.561-0.631) <0.001
NN 0.693 (0.650-0.736) 0.549 (0.515-0.583)
Haemorrhage SVM 0.712 (0.678-0.746) 0.667 (0.641-0.693) 0.747
ensembled RD LGBM 0.755 (0.722-0.788) 0.741 (0.719-0.762) (0.723-0.772) <0.001
NN 0.700 (0.665-0.735) 0.695 (0.672-0.718)
GI Toxicity SVM 0.744 (0.713-0.755) 0.669 (0.645-0.694) 0.671
ensembled RD LGBM 0.689 (0.660-0.718) 0.667 (0.643-0.690) (0.647-0.694) 0.243
NN 0.719 (0.689-0.749) 0.656 (0.632-0.681)

AUC: area under the curve; CI: confidence interval; RD: radiomic-dosimetric model; GI: gastrointestinal; SVM: support vector machine; LGBM: light gradient boosting

machine; NN: neural network.

predictive performance of the radiomic-dosimetric models was
proven to be statistically superior to that of models using only
radiomic or dosimetric features (p < 0.001). To establish the rela-
tive importance of the radiomic-dosimetric models presented in
Table 2, correlated or redundant features were identified and
removed prior to prediction using feature selection algorithms.

The results of this are shown in Supplementary Material D. Follow-
ing prediction, the final feature rankings were calculated using the
Shapely Additive Explanation (SHAP) approach (Supplementary
Material E).

For ensemble learning which averages the prediction probabil-
ities obtained from different classifiers with the highest validation
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Fig. 2. ROC curves with 95% confidence intervals of the radiomic-dosimetric models and the ensembled radiomic-dosimetric model for grade > 1 haemorrhage prediction.
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AUC values, the ensembled radiomic-dosimetric models for procti-
tis (AUC = 0.596, 95% CI 0.561-0.631) and haemorrhage
(AUC = 0.747, 95% C1 0.723-0.772) were found to perform statisti-
cally better than using only individual classifiers (p < 0.001)
(Table 3). For GI toxicity, although the mean AUC value of ensem-
ble learning (AUC = 0.671, 95% CI 0.647-0.694) was greater than
the test AUC values obtained from individual classifiers, this
improvement was not statistically significant. The ROC curves of
the radiomic-dosimetric models for haemorrhage and the ensem-
bled radiomic-dosimetric model with 95% Cls are shown in Fig. 2.

Discussion

Building accurate predictive models for identifying potential
patients who may have side effects after radiotherapy may help
clinicians decide the best treatment plan for patients. The main
goal of the study was to correlate region-level CT radiomic features
with late rectal toxicities for PCa radiotherapy and to investigate
whether the inclusion of region-level radiomic features together
with dosimetric features can enhance prediction performance. In
the study, we developed predictive models for mild proctitis,
haemorrhage and GI toxicity based on radiomic features, dosimet-
ric features and the combination of radiomic with dosimetric fea-
tures. The overall trend of these results is that this approach
could be helpful to learn more about the predictive power of radio-
therapy planning CT radiomic features which can be extracted
before the start of the course of treatment. Therefore, at least in
theory, they could be used to modify and further individualise
the radiotherapy treatment plan.

For haemorrhage and GI toxicity, the radiomic models had
test AUCs > 0.63, which showed the feasibility of using planning
CT radiomic features for radiotoxicity prediction. After adding
radiomic features, compared to using only dosimetric features,
the mean AUC values of the test set increased from 0.538 (for
proctitis), 0.650 (for haemorrhage) and 0.573 (for GI toxicity)
to 0.549, 0.741 and 0.669, representing a marked increase.
Besides, the statistical analysis revealed that using the combined
feature set significantly improved outcomes for all endpoints.
Although the prediction results for proctitis obtained by individ-
ual classifiers were not satisfactory, the AUC value of the ensem-
bled radiomic-dosimetric model for proctitis almost reached 0.6.
Additionally, the AUC values significantly improved for proctitis
and haemorrhage by utilising ensemble learning which aggre-
gates the predictions from multiple different classifiers, and thus
reduces overfitting and improves the generalisability [29]. Of the
three endpoints, haemorrhage had the best results, with a much
smaller difference between the validation AUC and the test AUC
compared to proctitis and GI toxicity because haemorrhage is a
more objective and reproducible endpoint. Although there are
well-established toxicity scoring systems, predicting adverse
events is challenging as perceptions and situations may vary
for different patients, and thus the patient-reported toxicity data
remains subjective.

Several investigators have demonstrated the good performance
of machine learning models in predicting rectal toxicities
[14,30,31]. Gulliford et al. [30] used artificial neural networks
(ANNs) with clinical and dosimetric data to predict RTOG G2/G3
rectal bleeding in 119 PCa patients after radiotherapy. The results
were encouraging with sensitivity and specificity of above 55%.
Tomatis et al. [31] correlated dosimetric and clinical features with
SOMA/LENT (subjective, objective, management and analytic/late
effects of normal tissue) G2 rectal bleeding in 718 PCa patients
using ANNs and had AUC = 0.714. In line with our study, some
researchers have also aimed to correlate radiomics with toxicity
outcomes [14-16]. Abdollahi et al. [16] analysed 33 patients and
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correlated the change of rectal wall magnetic resonance imaging
(MRI) radiomic features with early rectal toxicity. An AUC of 0.81
was reached when all significant features were combined, suggest-
ing that pre-treatment MRI features could predict early rectal tox-
icity for PCa radiotherapy. Later, Abdollahi et al. [15] associated
image texture changes on pre- and post-treatment T2-weighted
MRI of the rectal wall with radiation dose and urinary toxicity in
33 patients. The results showed a good correlation between feature
changes and urinary toxicity. Mostafaei et al. [14] analysed the CT
image features from 64 PCa patients using a stacking regression
algorithm to predict acute cystitis and proctitis. No external valida-
tions were applied in these studies. The findings of the research are
encouraging. However, their results are limited by the relatively
small numbers of patients and by the fact that the IBSI processes,
which promote reproducibility and standardisation across the field
[32], were not followed [26].

One key implication of the results, that radiomic features
derived from the planning CT can improve the prediction of toxic-
ity, is that toxicity could be further mitigated by acting on the pre-
dictions. For example, men with predicted high risks of toxicity
could be re-planned with more strict planning dosimetry objec-
tives, and they could be selected for adaptive treatment based on
accumulated rectal dose [21] or offered insertion of a rectal gel
spacer. In addition, radiomic features may be detecting indicators
of underlying biological mechanisms of toxicity and could direct
further research into the fundamental biology of toxicity [33].

Although the results of this study are encouraging, there are
limitations. Firstly, this study was conducted in a single institution.
Although the data was collected prospectively following a carefully
designed protocol, and the diversity of the dataset have been
reflected by repeated cross-validation with different splits of the
data, further studies with larger datasets obtained from multiple
institutions would be required to demonstrate the generalisability
of the results. Second, it is necessary to perform multiple experi-
ments to investigate robust and reproducible radiomic features
and to combine these with other informative variables such as
patient characteristics and biological factors including genotype
[33] to realise personalised treatment. The last limitation is that
this study is conducted to predict only G1 late rectal toxicities
because of the low incidence of G2-3 toxicities and more work
must be done to build models for moderate/severe late rectal tox-
icities such as in the previous VoxTox study by Shelley et al. [21].
That said, G1 toxicity is an important consideration for patients
receiving radiotherapy and all efforts to reduce even G1 toxicities
will be welcomed by patients.

There are several studies investigating the power of radiomics
on toxicity prediction based on statistical analysis. Radiomic fea-
tures extracted from grey level co-occurrence matrix (GLCM) and
grey level run length matrix (GLRLM) on MRI were found to have
a strong correlation with structural changes in the rectal wall dur-
ing PCa radiotherapy [16]. Similar findings were reported in
another study where GLCM features calculated on MRI were
observed to be correlated with bladder wall changes during PCa
radiotherapy[15]. In studies of radiation therapy for other cancers,
short run emphasis from GLRLM and maximum CT intensity
extracted on planning CT scans were found to significantly
improve the prediction of xerostomia and sticky saliva in head
and neck cancer patients [34,32]. Changes in first-order statistics
(FOS) and GLCM features during oesophageal cancer radiotherapy
were also reported to be correlated with G3 radiation pneumonitis
(CTCAEv4). Although the goal of this study was to build predictive
models based on machine learning algorithms rather than carrying
out a feature-level analysis, further studies will be conducted to
identify robust imaging biomarkers for the prediction of
radiation-induced late rectal toxicity. Moreover, radiomic-level
analysis incorporating daily imaging information from image guid-
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ance scans will be conducted to investigate possible differences
between conventional fractionation and hypofractionation in
future work.

Region-level radiomic pre-treatment planning CT texture anal-
ysis is a promising approach for rectal toxicity modelling in PCa
radiotherapy. In addition, these models may help in the develop-
ment of individualised treatment planning for PCa radiotherapy
and offer clinicians new insight into treatment risks.
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